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We study dynamical chiral symmetry breaking �DCSB�, confinement, and disorder effects in
�2+1�-dimensional quantum electrodynamics �QED� of massless fermion � and scalar boson �. It is found that
gauge symmetry breaking �GSB� induced by nonzero ��� rapidly suppresses the occurrence of DCSB, and
certain disorders tend to enhance it. While DCSB leads to confinement in the gauge symmetric state, the matter
fields are always deconfined in the GSB state whether chiral symmetry is broken or not. According to the
symmetries and the classical potential between particles, QED3 has three possible phases, which exhibit
distinct phenomena and can be identified by appropriate observable quantities.
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Three-dimensional quantum electrodynamics �QED3� ex-
hibits very interesting properties such as spontaneous �dy-
namical� symmetry breaking and confinement �CM�. It also
has extensive applications in planar condensed-matter phys-
ics. In particular, the low-energy physics of high-temperature
superconductors can be described by QED3 of massless
Dirac fermion and scalar boson.1–5 In this case, the spin and
charge degrees of freedom of electrons are separated with
spin and charge represented by massless fermion and scalar
boson, respectively.1 The gauge field emerges as the result of
strong electron correlation and is not the usual electromag-
netic field.1

The effective theory has two continuous symmetries: local
gauge symmetry and chiral symmetry. However, they both
can be broken spontaneously or dynamically. The gauge
symmetry is spontaneously broken when the scalar field de-
velops a nonzero vacuum expectation value corresponding to
the phase transition to superconductivity.1 The gauge boson
then becomes massive via the Anderson-Higgs mechanism.
The chiral symmetry can be dynamically broken by a finite
fermion mass, which is usually generated through strong
gauge interaction.6–9 These two kinds of symmetry breaking
are not independent. In fact, the mass ma of gauge boson
generated by gauge symmetry breaking �GSB� weakens the
gauge interaction and thus can suppress the happening of
dynamical chiral symmetry breaking �DCSB�.10

In any realistic many-body system, there are always dis-
orders of various types. Disorders can bring a plethora of
interesting phenomena such as localization and metal-
insulator transition.11 However, how they affect DCSB has
not been systematically studied. In this paper, we study the
effects of gauge interaction and disorders on DCSB in QED3.
By incorporating disorders into the Dyson-Schwinger �DS�
integral equation of fermion self-energy, we found that
DCSB is suppressed by growing gauge boson mass ma but is
enhanced by growing disorder strength g. As a consequence
of this competing effect, there is a critical line in the ma−g
plane which separates the DCSB phase and the chiral-
symmetric phase.

Confinement is another interesting property of QED3.12–14

In the state where local gauge symmetry is preserved, the
massless fermions are deconfined but are confined by a loga-

rithmically growing classical potential once DCSB takes
place.13,14 In this paper, we show that the close correspon-
dence between DCSB and confinement is destroyed by GSB.
Actually, the matter fields are always deconfined in the su-
perconducting state irrespective of the mass of fermions.

According to whether the chiral and gauge symmetries are
preserved or broken, and to whether the matter fields are
confined or deconfined, the whole system can stay in three
possible phases. The system exhibits quite different physical
properties in each of these phases, so we can identify each
phase by theoretical and experimental investigations of some
observable quantities. We present the phase diagram of the
system and show how to identify each phase by the thermal
conductivity.

We start with the Lagrangian L=LF+LB, where

LF = −
1

4
F��F�� + �

�=1

N

�̄���� − iea������, �1�

LB = �
i=1

2

���� − iea���i�2 + �2�2 + ��4. �2�

Here, LF describes the interaction between massless Dirac
fermions � and gauge field a� �Ref. 15�, and LB is the rela-
tivistic Ginzburg-Landau model.16 The 4�1 spinor �� rep-
resents the massless Dirac fermion. Its conjugate field is de-

fined as �̄=�†�0. The 4�4 �� matrices obey the Clifford
algebra, ��� ,���=2	��. The fermion has flavor N, whose
physical value is 2.1,2 The flavor of scalar field � is taken to
be 2, but the extension to other flavors is straightforward.

The propagator of free Dirac fermion is simply
S0

−1�p�= i� · p, while the full inverse fermion propagator is
given by S−1�p�= i� · pA�p2�+
�p2�, where A�p2� is the
wave-function renormalization and 
�p2� is the fermion self-
energy function. The full and bare fermion propagators are
related by the DS equation

S−1�p� = S0
−1�p� +	 d3k

�2��3��S�k�D���p − k����k,p� .

Here the fermion self-energy diagram is shown in Fig. 1,
where the internal solid line is the full fermion propagator
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and the wavy line is the gauge boson propagator.
If the DS equation for fermion self-energy 
�p2� has only

vanishing solutions, the fermions are massless and the La-
grangian respects the chiral symmetry �→exp�i
�3,5��,
with 4�4 matrix �3,5 anticommuting with �� ��=0,1 ,2�.
Once the DS equation develops a squarely integrable non-
trivial solution, the massless fermions acquire a finite mass.
The complete DS equation is extremely complicated, and it
is necessary to make proper approximations. To the lowest
order of 1 /N expansion, we assume that A�p2�=1 and ap-
proximate the vertex function ���k , p� by bare vertex ��.6

Thus the DS equation simplifies to


�p2� = e2	 d3k

�2��3

��D���p − k�
�k2���

k2 + 
2�k2�
. �3�

The gauge boson propagator in the Landau gauge is

D���q� =
1

q2
1 + ��q�� + ma
2�	�� −

q�q�

q2 
 , �4�

where ��q� is the vacuum polarization function and ma is the
mass of gauge boson �defined later�. The polarization func-
tion ��q� contains two contributions: ��q�=�F�q�+�B�q�
where �F�q�=� /8�q� is the fermion contribution6 with
�=Ne2 being fixed as N→0 and �B�q� is the scalar boson
contribution. In the absence of scalar boson, �B�q�=0,
DCSB takes place once the fermion flavor N is less than a
critical value Nc which is 32 /�2 to the lowest order.6–9 The
physical fermion flavor is N=2�Nc, so DCSB actually hap-
pens and the fermions become massive. In the presence of
nonzero �B�q�, this result is changed.

We now consider the Lagrangian LB. If �2�0, the scalar
field � has a vanishing vacuum expectation value of ���=0
and the Lagrangian is invariant under local gauge transfor-
mation ��x�→ei��x���x�. If �2�0, � develops a finite
vacuum expectation value of ���=v /�2 with v=�−�2 /�.
The nonzero ��� spontaneously breaks the continuous local
gauge symmetry and hence would lead to a massless Gold-
stone boson. However, the Goldstone boson can be elimi-
nated by a particular gauge transformation, generating a fi-
nite gauge boson mass. To calculate the polarization �B�q�,
we decompose the scalar field as ��x�= 
v+h�x�+ i��x�� /�2
so that the boson Lagrangian can be rewritten in the form

LB =
1

2
���h�2 +

1

2
�����2 +

1

2
e2�v + h�2a�

2 +
1

2
e2�2a�

2

+ e�a���h − e�v + h�a���� −
�

4
�h4 + �4 + 4v2h2 + 4vh3

+ 4vh�2 + 2h2�2� .

It is easy to see that the mass of Higgs scalar boson is
mh=�2�v and the mass of gauge boson is ma=ev. Either of
them can be used as the turning variable to study how Nc

varies. The ratio r=mh /ma=�2� /e is the Ginzburg param-
eter. The one-loop vacuum polarization �B�q� contains four
Feynman diagrams,17,18 which gives rise to

�B =
e2

4�q2�ma − mh +
ma

q2 �mh
2 − ma

2� +
mh

q2 �ma
2 − mh

2��
+

e2

4�

�q2 + mh
2 − ma

2�2 − 4ma
2q2

2q5 � , �5�

where �=arctan
q2+ma

2−mh
2

2mhq +arctan
q2+mh

2−ma
2

2maq . In the absence of
disorders, the DS equation can be solved numerically with
the result that gauge boson mass ma �and mh� suppresses the
critical fermion flavor Nc.

18

We now include static disorders to the field theory. The
random potential U�x� induced by disorders has two conse-
quences: it modifies the value of critical fermion flavor Nc,
and it leads to a finite scattering rate �inverse scattering time�
for fermions and produces finite physical quantities that can
be measured by experiments. For the convenience of per-
forming functional integration, we write down the action,
rather than the Lagrangian, for the interaction between dis-
order and Dirac fermions,

Sdis =	 d2xdt�
�=1

N

U�x��̄��x��0���x� . �6�

The coupling between scalar boson field � and random po-
tential U�x� is omitted since we are mainly interested in the
single-particle spectrum of fermions. We assume the
random potential U�x� to be a Gaussian white noise so
that �U�x��=0 and �U�x�U�x���=G	�x−x�� where the
mean value is taken with the distribution P
U�
=exp
− 1

2G�d2xU2�x��. To average over the random variable
U�x�, we use the standard replica trick and perform a
Hubbard-Stratonovich transformation,11

	 DU exp�−	 d2x� 1

2G
U2 +	 dtU�̄�0�
�

= exp�G

2
	 d2xdtdt��

�,�
��̄�,��0��,��2� , �7�

where G plays the role of a coupling constant. There appears
an effective four-fermion action. The summation is over both
the spin index � and the replica index �=1,2 , . . . ,R. In the
final step, we should take the limit R→0. To explore the
localization properties, one usually can map this to an effec-
tive nonlinear � model11 after a series of manipulations.
Then the fermion localization and metal-insulator transition

FIG. 1. The lowest-order fermion self-energy correction arising
from gauge interaction.
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can be analyzed systematically11 using the renormalization
group. Since we are only concerned in the single-particle
spectrum of Dirac fermion, it is more convenient to deal with
the four-fermion interaction �7�. Notice that the whole action
preserves the chiral symmetry. In fact, action �7� can be con-
sidered as a variant of the Nambu-Jona-Lasinio model,19

which is known to be renormalizable and able to trigger
DCSB in both �1+1� �Ref. 20� and �2+1� dimensions.21

When there are no gauge and Coulomb interactions, the ran-
dom Dirac fermion problem and the replicated action similar
to �7� have been extensively studied in references,22 focusing
on the properties related to localization. We currently only
consider the possibility of dynamical generation of fermion
mass and simply ignore the localization effects.

Both gauge and four-fermion interactions can cause dy-
namical fermion mass generation and hence will be treated
simultaneously. The Feynman rules23 for impurity scattering
have two novel features. First, the impurity lines carry only
momentum and no energy because there is no energy transfer
during the scattering of fermions by static disorders. Second,
the impurity lines should always appear in pairs, which is a
result of the Gaussian distribution of random potential U�x�.
The lowest self-energy contribution to fermion propagator
contains two diagrams �see Fig. 2�. In the replica limit
R→0, the diagram �b� vanishes since it has a closed fermion
loop which leads to an extra factor R. The diagram �a� gives
the only disorder contribution to fermion self-energy.

The DS equation for fermion mass function 
�p2� is given
by Eq. �3� when the fermions receive self-energy correction
only from the gauge interaction. The effective four-fermion
interaction �7� yields an additional contribution to Eq. �3�,
changing the DS equation to


�p� =
2�

N
	 d3k

�2��3


�k�
k2 + 
2�k�

1

�p − k�2
1 + ���p − k��� + ma
2

+ g	 d2k

�2��2


�k�
p0

2 + k2 + 
2�k�
, �8�

where g=GN. In the right-hand side of this equation, the first
term comes from the gauge interaction �Fig. 1� and the sec-
ond term from the disorder effects 
Fig. 2�a��. Here we keep
only the leading order of 1 /N expansion and neglect all ver-

tex corrections. Notice that in the second term the integration
is taken over only momenta for the reason that the fermions
do not exchange energy when scattered by static disorders.

Equation �8� is a nonlinear integral equation of the Ham-
merstein type. We can obtain the bifurcation point after find-
ing the eigenvalues of the associated linearized equation us-
ing bifurcation theory and parameter embedding method.24,25

The eigenvalues that have odd multiplicity are the bifurca-
tion points. Taking Frêchet derivative of Eq. �8�, we have the
linearized equation


�p� =
1

2�
	 d�k�

���

N
	 dk0

�


�k�
k0

2 + k2

1

�p − k�2
1 + ���p − k��� + ma
2

+ g

�k�

p0
2 + k2� . �9�

For calculational convenience, we made the following scale
transformations: p→p /�, k→k /�, and 
→
 /�. An ultra-
violet cutoff � should be introduced here since the field
theory models the physics of high-temperature supercon-
ductor only beyond the length scale of lattice constant
a �a��−1�. To obtain the critical value Nc, we will find the
smallest eigenvalue of linearized equation with the help of
parameter embedding method.25

Numerical computations show that the gauge boson mass
ma and disorder strength g have opposite effects on the criti-
cal fermion flavor Nc. The results are shown in Fig. 3 for
r=100, which is the typical value of Ginzburg parameter of
high-temperature superconductor. For any fixed value of g,
the critical fermion flavor Nc is rapidly suppressed by grow-
ing ma. For any fixed value of ma, Nc increases as the disor-
der strength g increases. In the normal state where ma=0,
DCSB takes place for a small mass � of scalar boson � even
when g=0. In the superconducting state, as mass ma→0, the
value Nc coincides with that of the normal state as �→0.
Remember that the physical fermion flavor is 2, so chiral
symmetry is dynamically broken only when Nc�2.

The above results reveal a competition between GSB and
DCSB. As a result of this competing relationship, there is a

(b)(a)

FIG. 2. �a� Allowed self-energy diagram in the lowest order. �b� Disallowed self-energy diagram. The dashed line represents disorder
scattering.
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region for parameters �ma ,g� where these two kinds of sym-
metry breaking coexist. Since GSB corresponds to supercon-
ductivity and DCSB to the formation of long-range
antiferromagnetism,4,26 this describes the competition and
coexistence of superconductivity and antiferromagnetism.10

The effect of disorders is to significantly enhance the occur-
rence of DCSB and to drive the system toward antiferromag-
netism phase.

We now turn to the problem of confinement. The classical
potential between two particles with opposite gauge charges
can be written in the coordinate space as

V�x� = − e2	 d2q

�2��2eiq·x 1

q2
1 + ��q2��
. �10�

It has the following asymptotic form:13,14

V�x� =
e2

2�

1

1 + ��0�
ln�e2�x�� + const + O��x�−1� . �11�

In the absence of vacuum polarization ��q�, the potential has
a logarithmic form V�x�� ln�e2�x��. This potential increases
at large distances and hence is a confining potential. After
polarization ��q� is included, the potential depends on ��0�.
If there is no scalar field, potential V�x� depends on whether
the fermion mass is zero or finite. For massless fermion, the
vacuum polarization ��q�=� /8�q� diverges as q→0, so the
confining potential is destroyed and the massless fermions
are free �deconfined�. If the fermion has a constant mass 
0
in the DCSB phase, we have

�F�q� =
�

4�q2�2
0 +
q2 − 4
0

2

q
arcsin

q

�q2 + 4
0
2
 .

In the limit q→0, it has a finite value of �F�0�=� /8�
0.
Thus in the DCSB phase, the gauge potential is confining
and there is no asymptotic state of fermions.14

However, the classical potential V�x� has rather different
behavior in the presence of coupling between gauge field and
scalar boson. In the GSB state, due to the finite gauge boson
mass, the effective polarization function ��q� should be re-

placed by ��q�+ma
2 /q2. This effective polarization always

diverges as q→0, then the matter fields are always decon-
fined in the GSB state whether DCSB happens or not. In the
gauge symmetric state, the scalar boson has a constant con-
tribution �B�0�=e2 /8�� to polarization, so particles are still
confined once DCSB happens.

According to the symmetries �chiral and gauge� and the
nature of classical potential V�x�, the interacting system can
have three phases: phase I is characterized by local gauge
symmetry, DCSB, and CM; phase II is characterized by
GSB, DCSB, and deconfinement �DCM�; and phase III is
characterized by GSB, chiral symmetry, and deconfinement.
The topological phase diagram of the interacting field theory
is presented in Fig. 4. There is a critical line �the bold solid
line� separating the DCSB phases �I and II� from the chiral-
symmetric phase �III�. The intersecting point of the critical
line with horizontal axis is ma

�. In the clean limit, g=0, ma
� is

just the critical value of ma, beyond which DCSB is com-
pletely suppressed.

We now discuss how these three phases can by identified
by experimentally observable quantities. First of all, the van-
ishing resistivity can differentiate phases II and III from
phase I, but it cannot distinguish phase II from phase III. To
completely distinguish the three phases I, II, and III, we
should consider observable quantities that can efficiently re-
flect the behavior of fermions, such as specific heat, spin
susceptibility, and thermal conductivity.

Among these observable quantities, we choose to consider
the low-temperature dc thermal conductivity �. At very low
temperatures, � is determined solely by fermions because the
boson contribution to � is proportional to T3, and hence it
can be ignored. The thermal conductivity has distinct behav-
iors in these three phases. �i� In phase I, the fermions are all
confined and cannot transport heat current in the bulk sys-
tem. Therefore, the thermal conductivity must vanish, �=0.
�ii� In phase II, the massive fermions are deconfined and
hence capable of transporting the heat current. Using the
Kubo formula, the thermal conductivity can be readily cal-
culated to the leading order of 1 /N expansion with the
result27

�

T
=

1

6
NkB

2 �0
2

�0
2 + 
0

2 , �12�

where �0 is the scattering rate produced by disorders and kB
is the Boltzmann constant ��=c=1�. �iii� In phase III, the
fermions are massless and deconfined. In the massless fer-

FIG. 3. �Color online� Critical flavor Nc for different values of
ma and g at a ratio of mh /ma=100.

FIG. 4. Phase diagram of the system.
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mion limit, 
0=0, � reduces to a universal value28 �
T

= 1
6NkB

2 , which depends only on fundamental constants and is
completely independent of impurity scattering rate. Indeed,
this universal value of � has been observed by transport ex-
periments of optimally doped cuprate superconductors.29 Ex-
pression �12� indicates that fermion mass 
0 measures the
deviation of � from the universal value. We now conclude
that thermal conductivity � is an ideal quantity to distinguish
phases I, II, and III, provided that the system is not in the
limit 
0��0 �where � is significantly suppressed by 
0�.

We finally comment on the approximations used in this
paper. Here we keep only the leading order of 1 /N expansion

when analyzing the DS equation. Although being very inter-
esting, it is not easy to go beyond the leading order because
the whole system contains three kinds of interactions. Includ-
ing coupled equations of A�p2� and ���k , p� will add much
complexity to numerical computation due to the impossibil-
ity of reducing Eq. �8� to a one-dimensional equation. More-
over, we believe that higher order corrections do not change
the qualitative conclusion and the topological phase diagram
in the present work.
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